Abstract

Alternative splicing (AS) is a dynamic RNA processing step that produces multiple RNA isoforms from a single pre-mRNA transcript and contributes to the complexity of the cellular transcriptome and proteome. This process is regulated through a network of cis-regulatory sequence elements and trans-acting factors, most-notably RNA binding proteins (RBPs). The muscleblind-like (MBNL) and RNA binding fox-1 homolog (RBFOX) are two well characterized families of RBPs that regulate fetal to adult AS transitions critical for proper muscle, heart, and central nervous system development. To better understand how the concentration of these RBPs influences AS transcriptome wide, we engineered a MBNL1 and RBFOX1 inducible HEK-293 cell line. Modest induction of exogenous RBFOX1 in this cell line modulated MBNL1-dependent AS outcomes in 3 skipped exon events, despite significant levels of endogenous RBFOX1 and RBFOX2. Due to background RBFOX levels, we conducted a focused analysis of dose-dependent MBNL1 skipped exon AS outcomes and generated transcriptome wide dose–response curves. Analysis of this data demonstrates that MBNL1-regulated exclusion events may require higher concentrations of MBNL1 protein to properly regulate AS outcomes compared to inclusion events and that multiple arrangements of YGCY motifs can produce similar splicing outcomes. These results suggest that rather than a simple relationship between the organization of RBP binding sites and a specific splicing outcome, that complex interaction networks govern both AS inclusion and exclusion events across a RBP gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call