Abstract
BackgroundAlternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST) that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression.ResultsWe analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported) transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays.Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic predictions of alternative splicing in cancer.ConclusionDifferential expression of high confidence transcripts correlated extremely well with known cancer genes and pathways, suggesting that the more speculative transcripts, largely based solely on computational prediction and mostly with no previous annotation, might be novel targets in colon cancer. Five of the identified splicing events affect mediators of cytoskeletal organization (ACTN1, VCL, CALD1, CTTN, TPM1), two affect extracellular matrix proteins (FN1, COL6A3) and another participates in integrin signaling (SLC3A2). Altogether they form a pattern of colon-cancer specific alterations that may particularly impact cell motility.
Highlights
Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing
The array contains approximately 5.4 million 5-μm features grouped into 1.4 million probesets interrogating over one million exon clusters
Probes were not included for some Probe Selection Region (PSR) because the PSR might be too small or contain highly repeated or otherwise problematic sequence
Summary
Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternative splicing of mRNA transcripts is one mechanism by which genomic complexity is generated from the surprisingly low number of genes currently estimated from the human genome sequence. There are examples of hundreds of alternative splicing events from a single gene, which may affect function by adding or deleting functional domains, changing affinities, and altering mRNA stability. Modifications in functionality may be generated, for example, through the deletion of a signaling domain, increased affinity for messenger ligands, or change in affinity or activity toward extracellular components. The latter frequently results in increased cell migration and invasion (For general reviews, see [2,3]). In most cases the relationship between specific splicing events and the etiology of cancer is largely unproven, alternative splicing presents novel targets for diagnostic and therapeutic measures
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.