Abstract
Multisolitons and multi-hump solitons are constructed for the coupled Korteweg–de Vries (cKdV) system introduced by Hirota and Satsuma (1981) in the context of the propagation of two waves interacting with different dispersion relations. The direct method analytically exhibit a new class of complementary or alternative soliton solutions functionally different to the traditional or classical multisolitons known (Hirota and Satsuma, 1981; Ramani et al., 1983; Parra Prado and Cisneros-Ake, 2020). As in the classical case, our alternative multisolitons are found to obey elastic interactions of the N-KdV and M-cKdV solitons. To show this, we inductively construct tables to describe in detail the mechanism of the different wave interactions and the coefficients involved in them. As a particular scenario, it is found that each of the 1-cKdV and 1-KdV-1cKdV interaction cases may produce two independent criteria for the appearance of one-soliton solutions consisting of two humps in shape. A proper combination of these two conditions gives place to multi-hump solitons. We explicitly show the two-one, two-two, three-one and three-two humps for the two-component wave solutions. • The direct method due to Hirota allows to find complementary two-component multisolitons in a coupled KdV system. • Symmetric one-soliton solutions with two humps in shape are obtained from two independent criteria. • Multi-hump alternative solitons are constructed from two different two-hump conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Partial Differential Equations in Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.