Abstract

Cochlear implants (CIs) stimulate the auditory nerve with trains of symmetric biphasic (BI) pulses. We review studies showing that more efficient stimulation can be achieved by modifying these pulses by (1) increasing the inter-phase gap (IPG) between the two phases of each pulse, thereby delaying the recovery of charge, (2) increasing the duration and decreasing the amplitude of one phase - so-called "pseudomonophasic (PS)" waveforms, and (3) combining the pseudomonophasic stimulus with an IPG in a "delayed pseudomonophasic" waveform (PS_IPG). These efficiency gains, measured using changes in threshold and loudness, occur at a wide range of pulse rates, including those commonly used in current CI systems. In monopolar mode, dynamic ranges are larger for PS and for long-IPG pulse shapes than for BI pulses, but this increase in DR is not accompanied by a higher number of discriminable loudness steps, and hence, in a better coding of loudness. Moreover, waveforms with relatively short and long interphase gaps do not yield different patterns of excitation despite the relatively large differences in threshold. Two important findings are that, contrary to data obtained in animal experiments, anodic currents are more effective than cathodic stimulation for human CI patients and that the thresholds decrease with increases in IPG over a much longer time course (more than 3 ms) than for animals. In this review it is discussed how these alternative pulse shapes may be beneficial in terms of reducing power consumption and channel interactions, which issues remain to be addressed, and how models contribute to guiding our research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.