Abstract
We present two alternative frameworks for the statistical characterization and performance evaluation of the fluctuating two-ray (FTR) fading model which simplify previous approaches. The new formulations are based on the fact that the FTR fading distribution can be described, for arbitrary <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> , as an underlying Rician Shadowed (RS) distribution with continuously varying parameter <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K_{r}$ </tex-math></inline-formula> (ratio of specular to diffuse power components), while for the special case of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> being an integer, it is demonstrated that the FTR fading model can be described in terms of a finite number of underlying squared Nakagami- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> distributions. It is shown that any performance metric that is computed by averaging over the probability density function (PDF) of the FTR fading model can be expressed in terms of a finite-range integral over the corresponding performance metric for the simpler RS (for arbitrary <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> ) or Nakagami- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> (for integer <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> ) fading models, for which many results are available in closed-form. New expressions for some Laplace-domain statistics of interest are also obtained; these are used to analyze the outage probability of FTR fading under co-channel interference, as well as to obtain closed-form expressions for the main statistics of a composite wireless channel model encompassing FTR fading and shadowing.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have