Abstract

Photoheterotrophic and photoautotrophic cell suspension cultures were raised from a callus tissue derived from a Morinda lucida Benth. plant (Rubiaceae). The cultures were characterized with regard to fresh weight, dry weight, cell number, pH, chlorophyll and quinoid natural products. The amount of lipoquinones (phylloquinone, α-tocopherol, plastoquinone, ubiquinone) isolated from the photoautotrophic cultures matched the amount detected in an intact leaf. Anthraquinone glycosides which are found in the roots of Morinda plants were not present in the photoautotrophic culture. The photoheterotrophic culture contained only trace amounts of these pigments. Abundant anthraquinone synthesis was observed when photoautotrophic and photoheterotrophic suspension cultures were transferred into darkness, provided sucrose was present in the medium. Induction of synthesis of anthraquinone pigments coincided with a rapid disappearance of lipoquinones from the culture. Thus, in the suspension culture, photoautotrophy correlates with lipoquinone synthesis and heterotrophy correlates with anthraquinone synthesis. This reflects the situation in the intact plants where lipoquinones are chloroplast-associated whereas anthraquinones occur in the roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.