Abstract

Motivated by future data storage requirements, Ge2Sb2Te5 is studied for application in phase-change random access memory. The currently accepted density of states (DOS) models for the cubic crystalline phase, based on first-principles calculations, are reviewed. An alternative DOS model, which incorporates band tails and an antimony vacancy multivalent defect, is proposed. Solar cell capacitance simulation results reveal that the alternative model is successful in predicting a free hole concentration and Fermi level position consistent with previous Hall effect and thermopower measurements respectively. The conduction band tail, which has not previously been incorporated within the DOS model of the crystalline phase, is shown to contribute to this success.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.