Abstract

We have now sufficient evidence that using electrical biosignals in the field of Alternative and Augmented Communication is feasible. Additionally, they are particularly suitable in the case of people with severe motor impairment, e.g. people with high-level spinal cord injury or with locked-up syndrome. Developing solutions for them implies that we find ways to use sensors that fit the user's needs and limitations, which in turn impacts the specifications of the system translating the user's intentions into commands. After devising solutions for a given user or profile, the system should be evaluated with an appropriate method, allowing a comparison with other solutions. This paper submits a review of the way three bioelectrical signals - electromyographic, electrooculographic and electroencephalographic - have been utilised in alternative communication with patients suffering severe motor restrictions. It also offers a comparative study of the various methods applied to measure the performance of AAC systems.

Highlights

  • IntroductionMuch research work has been devoted in the past twenty years to developing assistive technology (AT) devices aiming at offering to people suffering a motor disability of various origins (e.g. locked-in-syndrome, amyotrophic lateral sclerosis, quadriplegia, muscular dystrophy, cerebral palsy, etc.) associated to disorders of verbal communication, the possibility of communicating with the persons in their entourage and having some control on their environment

  • Much research work has been devoted in the past twenty years to developing assistive technology (AT) devices aiming at offering to people suffering a motor disability of various origins associated to disorders of verbal communication, the possibility of communicating with the persons in their entourage and having some control on their environment

  • The purpose of this paper is to report about our study regarding the several technologies employed in the restricted area of alternative communication systems based on bioelectricity

Read more

Summary

Introduction

Much research work has been devoted in the past twenty years to developing assistive technology (AT) devices aiming at offering to people suffering a motor disability of various origins (e.g. locked-in-syndrome, amyotrophic lateral sclerosis, quadriplegia, muscular dystrophy, cerebral palsy, etc.) associated to disorders of verbal communication, the possibility of communicating with the persons in their entourage and having some control on their environment. These AT devices are operated by human-machine interface sensors receiving information provided by the person with disabilities to pilot a graphical user interface [1]. It is necessary to study the performances of the usersensor-system trio

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.