Abstract

Materials for optoelectronics give a fascinating variety of issues to consider. Increasingly important are white light emitting diode (LED) and solar cell materials. Profound energy savings can be done by addressing new materials.White light emitting diodes are becoming common in our lighting scene. There is a great energy saving in the transition from the light bulb to white light emitting diodes via a transition of fluorescent light tubes. However, the white LEDs still suffer from a variety of challenges in order to be in our daily use. Therefore there is a great interest in alternative lighting solutions that could be part of our daily life. All materials create challenges in fabrication. Defects reduce the efficiency of optical transitions involved in the light emitting diode materials. The donor-acceptor co-doped SiC is a potential light converter for a novel monolithic all-semiconductor white LED. In spite of considerable research, the internal quantum efficiency is far less than theoretically predicted and is likely a fascinating scientific field for studying materials growth, defects and optical transitions.Still, efficient Si-based light source represents an ongoing research field in photonics that requires high efficiency at room temperature, wavelength tuning in a wide wavelength range, and easy integration in silicon photonic devices. In some of these devices, rare earth doped materials is considered as a potential way to provide luminescence spanning in a wide wavelength range. Divalent and trivalent oxidation states of Eu provide emitting centers in the visible region. In consideration, the use of Eu in photonics requires Eu doped thin films that are compatible with CMOS technology but for example faces material science issues like a low Eu solid solubility in silica. Therefore approaches aim to obtain efficient light emission from silicon oxycarbide which has a luminescence in the visible range and can be a host material for rare earth ions. The silicon oxycarbide material can provide potential applications of the Eu luminescent materials to challenging conditions like high temperatures or aggressive environments where the silica has weaknesses. In some approaches, silicon rich silicon oxide that contain silicon nanoclusters emit red to near infrared luminescence due to quantum confinement effects while luminescence at shorter wavelength is difficult due to the interplay of defects and quantum confinement effects. In addition it is applicable as low-k dielectric, etch-stop and passivation layers. It also has an optical band-gap that is smaller than that of SiO2 which may facilitate carrier injection at lower voltages that is suitable for optoelectronics. From materials perspective of emerging materials, it seems distant to consider system related issues. The future demands on communication and lighting devices require higher information flows in modernized optical devices, for example by replacing electrical interconnects with their optical counterparts and tunable backgrounds filters for integrated optics or photonics applications. However, there are materials issues related to such device performance, for example by a non-linearity, that provide the possibility for selective removal or addition of wavelengths using hetero structures in which one side of the structure enhances the light-to-dark sensitivity of long and medium wavelength channels and diminish others, and an opposite behavior in other face of the structure. Certainly materials may be applied in various innovative ways to provide new performances in devices and systems.In any materials and device evaluation, reliability issues in passivation and packaging of semiconductor device structures provide a base knowledge that may be used to evaluate new concepts. Fundamental aspects of dielectric constant, bandgap and band offsets between the valence and conduction band edges between the passivation layer and the semiconductor create a foundation for understanding the device performance. In relation to these, the surface pre-treatment and deposition technique can influence the reliability and electric field durability of the system, and relate to interface and near interface regions between the dielectric and semiconductor which can host electronic defects which change the surface potential, reduces mobility and enhance the recombination of charge carriers.At the end, materials for energy savings are critically needed. At the symposium ‘‘Alternative approaches of SiC and related wide bandgap materials in light emitting and solar cell applications’’, held at the E-MRS 2013 Spring meeting, 27–31 May, 2013 Strasbourg, France, a variety of concepts were presented. In this publication, a selection is presented that represents a range of issues from materials to reliability processing to system approaches. Acknowledgements: Technical support during preparation of the symposium program and proceedings by Saskia Schimmel is greatly acknowledged.

Highlights

  • This content has been downloaded from IOPscience.

  • Please scroll down to see the full text.

  • 56 011001 (http://iopscience.iop.org/1757-899X/56/1/011001) View the table of contents for this issue, or go to the journal homepage for more

Read more

Summary

Introduction

This content has been downloaded from IOPscience.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.