Abstract

Compatibilization of blends of poly(ethylene terephthalate) (PET) and polystyrene with alternating copolymers of maleic anhydride and isobutylene (IM) and its partly phenol substituted product (PIM) has been studied. The characterization techniques applied were dynamic mechanical analysis, differential scanning calorimetry, scanning electron microscopy, and tensile testing. In all compositions studied, morphological observations demonstrated that the addition of approximately 5 wt % of copolymers led to the domain size reduction of dispersants. The PIM copolymer was most effective in reducing the domain size, whereas the IM copolymer was less satisfactory. The blends containing PIM also gave the more enhanced ultimate strength than those of other systems. The noncrystalline PIM copolymers lowered the tensile modulus of the blend as much as 60% even in the polystyrene-rich region and varied linearly with values of quenched PET modulus throughout the compositions, indicating the formation of homogeneous amorphous phase. Based on the experimental observation that the reduced domain size with PIM copolymer, a compatibilization mechanism of the blend with PIM alternating copolymer is proposed and discussed in terms of the interactions between ester groups of PET and PIM (transesterification), and the possible formation of intermediate π-complex between the π-electron deficient aromatic ring of PIM and π-electron rich aromatic ring of PS. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1998–2007, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.