Abstract
A three-phase magnetizer has been developed, by which non-oriented Fe-Si steel sheets can be characterized under alternating and rotational flux up to a polarization value $J_{p}\approx 0.98~J_{s}$ , where $J_{s}$ is the saturation magnetization. The loss measurements, performed in the frequency range 2 Hz–1 kHz, require the combination of field-metric and thermometric methods, besides fine control of the induction wave-shape/loci under the required demanding exciting conditions. By exploiting the loss separation concept, it is observed that under rotational flux, both the hysteresis and excess loss components monotonically decrease with $J_{p}$ , to disappear at saturation. The measured losses then become equal to the calculated classical losses. This could actually be predicted, because of the expected disappearance of the domain walls under saturating rotational field, but it has never been previously verified by the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.