Abstract

One important reason for low hydrogen production from protein wastewater is due to the native folded conformation of protein. In this study the enhancement of bio-hydrogen production from protein wastewater by altering protein conformation via pretreatment was reported. Firstly, the effect of different pretreatment methods (acid, alkali, heat, and ultraviolet) on hydrogen production from synthetic protein wastewater was compared. The hydrogen production from the ultraviolet pretreated wastewater was 111.3 mL/g-protein, which was 3.79-, 3.73-, 3.54-, and 1.36-fold of that from the unpretreated (blank), acid, alkali, and heat pretreated wastewater, respectively. Then, the reasons for ultraviolet pretreatment showing significantly higher hydrogen production than other pretreatments were investigated. It was found that all pretreatments did not cause the cleavage of peptide bond, but the ultraviolet one caused much greater damage of hydrogen bonding networks and unfolding of protein. Thus, during anaerobic fermentation much higher protease activity and protein utilization were observed, which resulted in the bio-hydrogen production being remarkably improved. Further studies indicated that the photo-oxidization of aromatic residues in protein was not the reason for ultraviolet pretreatment remarkably improving bio-hydrogen production. Finally, the application of ultraviolet pretreatment to enhance hydrogen production from real protein wastewater was testified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.