Abstract
We aimed to investigate changes in olfactory bulb volume and brain network in the white matter (WM) in patients with persistent olfactory disfunction (OD) following COVID-19. A cross-sectional study evaluated 38 participants with OD after mild COVID-19 and 24 controls, including Sniffin' Sticks identification test (SS-16), MoCA, and brain magnetic resonance imaging. Network-Based Statistics (NBS) and graph theoretical analysis were used to explore the WM. The COVID-19 group had reduced olfactory bulb volume compared to controls. In NBS, COVID-19 patients showed increased structural connectivity in a subnetwork comprising parietal brain regions. Regarding global network topological properties, patients exhibited lower global and local efficiency and higher assortativity than controls. Concerning local network topological properties, patients had reduced local efficiency (left lateral orbital gyrus and pallidum), increased clustering (left lateral orbital gyrus), increased nodal strength (right anterior orbital gyrus), and reduced nodal strength (left amygdala). SS-16 test score was negatively correlated with clustering of whole-brain WM in the COVID-19 group. Thus, patients with OD after COVID-19 had relevant WM network dysfunction with increased connectivity in the parietal sensory cortex. Reduced integration and increased segregation are observed within olfactory-related brain areas might be due to compensatory plasticity mechanisms devoted to recovering olfactory function.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have