Abstract

Afforestation can modify terrestrial carbon (C) pools, some of which are primarily fixed in the plant dead biomass and then incorporated into the microbial dead biomass. Soil microorganisms exert a critical role in C flow and potentially influence C balance through the degradation of plant and microbial dead biomass. Here, we compared sites along a 45-year Robinia pseudoacacia (RP) afforestation chronosequence on the Loess Plateau of China. Subsequently, the trends of microbial carbohydrate-active enzymes (CAZyme) and their responses to the decomposition of dead biomass of different origins were studied using metagenomics. The results show that soil microbial CAZyme families, which degrade the plant- and microbial-derived components, significantly increased after afforestation, with a significant peak at the 20-year site. The dominant bacterial phyla (i.e., Actinobacteria, Proteobacteria, and Acidobacteria) mineralized C sources from plant and microbial biomass components through their corresponding CAZyme families. Moreover, the increased abundance of CAZymes involved in the decomposition of plant-derived components (e.g., cellulose, hemicellulose, and lignin) contributed to the formation of C pools. In the case of microbial-derived components, the abundance of CAZymes encoding the bacterial-derived components (peptidoglycan) was larger than that encoding fungal-derived components (chitin and glucans) and was more associated with microbial metabolic activity (qCO2 and Cmic: Corg ratio), indicating a higher investment of bacterial-derived components for microbial carbon turnover following afforestation. Overall, our study compares plant- and microbial-derived biomass to illustrate the differential contributions of dead biomass to C accumulation and confirms the importance of the bacterial community and derived biomass for C turnover following afforestation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call