Abstract

Objective. Growing evidence have linked disorders of consciousness (DOC) with the changes in frequency-specific functional networks. However, the alteration of inter-frequency dynamics in brain networks remain largely unknown. In this study, we investigated the network integration and segregation across frequency bands in a multiplex network framework.Approach. Resting-state EEG data were recorded and analysed from 19 patients in minimally conscious state, 35 patients in unresponsive wakefulness syndrome (UWS) and 23 healthy controls. Frequency-based multiplex (cross-frequency) networks were reconstructed by integrating the five frequency-specific networks. Multiplex graph metrics, named multiplex participation coefficient and multiplex clustering coefficient, were employed to assess the network topology of subjects with different levels of consciousness.Main results. Results revealed DOC networks, compared to those of healthy controls, may work at a less optimal point (closer to complete disorder) with increased integration and decreased segregation considering inter-frequency dynamics. Both metrics show increased spatial and temporal variability with the consciousness levels. Moreover, significant correlation can be found between the alteration of cross-frequency networks in DOC patients and their behavioural performance at both local and global scales. Significance. These findings may contribute to the development of EEG network study and benefit our understanding of the processes of consciousness and their pathophysiology for DOC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call