Abstract

The effect of PLTP deficiency on hepatic lipid status and apolipoprotein A-I (apoA-I) biosynthesis in PLTP knockout (PLTP-KO) mice was investigated. PLTP-KO mice exhibited a marked reduction in HDL levels, but also increased triglycerides (TG), phospholipids (PL), and cholesterol in very-low-density lipoproteins (VLDL). Both male and female PLTP-KO mice displayed increased hepatic PL and decreased TG, and in the females, increased hepatic cholesterol was also detected. Primary hepatocytes from PLTP-KO mice displayed a different PL molecular species composition to the wild type (WT) controls, with prominent changes being a reduction of long chain fatty acid-containing and an increase of medium chain mono- or di-unsaturated fatty acid containing PL species. Cultured PLTP-KO hepatocytes synthesized and secreted apoA-I in similar quantities as the WT cells. However, the apoA-I secreted by PLTP-KO hepatocytes contained less choline PL, differing also in phosphatidylcholine/sphingomyelin ratio and fatty acyl species composition when compared to apoA-I from WT hepatocytes. Furthermore, the PLTP-KO-derived PL-deficient apoA-I was less stable in the hepatocyte culture medium than that produced by WT cells. These results demonstrate a complex regulatory role of PLTP in serum and liver lipid homeostasis, as well as in the formation of nascent apoA-I-PL complexes from the liver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call