Abstract

Term and preterm labor are associated with increased fetal hypothalamic-pituitary-adrenal (HPA) activation and synthesis of prostaglandins (PGs) generated through the increased expression of prostaglandin H synthase-II (PGHS-II) in the placenta. Inhibition of PGHS-II has been advocated as a means of producing uterine tocolysis, but the effects of such treatment on fetal endocrine functions have not been thoroughly examined. Because PGE(2) is known to activate the fetal HPA axis, we hypothesized that administration of meloxicam, a PGHS-II inhibitor, to sheep in induced labor would suppress fetal HPA function. Chronically catheterized pregnant ewes were treated with RU486, a progesterone receptor antagonist, to produce active labor, and then treated with either high-maintenance-dose meloxicam, graded-maintenance-dose meloxicam, or a saline infusion. Maternal uterine contraction frequency increased 24 h after the RU486 injection and the animals were in active labor by 48 +/- 4 h. RU486 injection led to increased concentrations of PGE(2), ACTH, and cortisol in the fetal circulation, and increased concentrations of 13,14 dihydro 15-ketoprostaglandin F(2 alpha) (PGFM) in the maternal circulation. Uterine activity was inhibited within 12 h of beginning meloxicam infusion at both infusion regimes. During meloxicam infusion there were significant decreases in fetal plasma PGE(2), ACTH, and cortisol concentrations, and PGFM concentrations in maternal plasma. In control animals, frequency of uterine contractions, maternal plasma PGFM, fetal plasma PGE(2), ACTH, and cortisol concentrations increased after RU486 administration, and continued to rise during saline infusion until delivery occurred. We conclude that RU486-provoked labor in sheep is associated with activation of fetal HPA function, and that this is attenuated during meloxicam treatment to a level considered compatible with pregnancy maintenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.