Abstract

Ventral hippocampal (vHPC)-prefrontal cortical (PFC) pathway dysfunction is a core neuroimaging feature of schizophrenia. However, mechanisms underlying impaired connectivity within this pathway remain poorly understood. The vHPC has direct projections to the PFC that help shape its maturation. Here, we wanted to investigate the effects of early developmental vHPC perturbations on long-term functional PFC organization. Using whole-cell recordings to assess PFC cellular activity in transgenic male mouse lines, we show early developmental disconnection of vHPC inputs, by excitotoxic lesion or cell-specific ablations, impairs pyramidal cell firing output and produces a persistent increase in excitatory and decrease in inhibitory synaptic inputs onto pyramidal cells. We show this effect is specific to excitatory vHPC projection cell ablation. We further identify PV-interneurons as a source of deficit in inhibitory transmission. We find PV-interneurons are reduced in density, show a reduced ability to sustain high-frequency firing, and show deficits in excitatory inputs that emerge over time. We additionally show differences in vulnerabilities to early developmental vHPC disconnection, wherein PFC PV-interneurons but not pyramidal cells show deficits in NMDA receptor-mediated current. Our results highlight mechanisms by which the PFC adapts to early developmental vHPC perturbations, providing insights into schizophrenia circuit pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.