Abstract

Hypoxia is known to promote vasodilation of coronary vessels through several mediators including cardiac-derived adenosine and endothelium-derived prostanoids and nitric oxide. To date, the impact of endogenous glycogen depletion in vascular smooth muscle and the resultant alterations in cellular energy state (e.g., AMP-activated protein kinase, AMPK) on the contractile response to G protein-coupled receptor agonists (e.g., serotonin, 5-HT) has not yet been studied. In the present study, ex vivo exposure of endothelium-denuded human saphenous vein rings to hypoxic and glucose-deprived conditions during KCl-induced contractions for 30min resulted in a marked depletion of endogenous glycogen by ∼80% (from ∼1.78μmol/g under normoxia to ∼0.36μmol/g under hypoxia). Importantly, glycogen-depleted HSV rings, which were maintained under hypoxia/reoxygenation and glucose-deprived conditions, exhibited significant increases in basal AMPK phosphorylation (∼6-fold ↑) and 5-HT-induced AMPK phosphorylation (∼19-fold ↑) with an accompanying suppression of 5-HT-induced maximal contractile response (∼68% ↓), compared with respective controls. Exposure of glycogen-depleted HSV rings to exogenous D-glucose, but not the inactive glucose analogs, prevented the exaggerated increase in 5-HT-induced AMPK phosphorylation and restored 5-HT-induced maximal contractile response. In addition, the ability of exogenous D-glucose to rescue cellular stress and impaired contractile function occurred through GLUT1-mediated but insulin/GLUT4-independent mechanisms. Together, the present findings from clinically-relevant human saphenous vein suggest that the loss of endogenous glycogen in vascular smooth muscle and the resultant accentuation of AMPK phosphorylation by GPCR agonists may constitute a yet another mechanism of metabolic vasodilation of coronary vessels in ischemic heart disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.