Abstract

Brown adipose tissue (BAT) mitochondria generate heat via uncoupled respiration due to excessive proton leak through uncoupling proteins (UCPs). We previously found hyperthermia in a newborn mouse model of fragile X syndrome and excessive leak in Fmr1 KO forebrain mitochondria caused by CoQ deficiency. The inefficient thermogenic nature of Fmr1 mutant forebrain mitochondria was reminiscent of BAT metabolic features. Thus, we aimed to characterize BAT mitochondrial function in these hyperthermic mice using a top-down approach. Although there was no change in steady-state levels of UCP1 expression between strains, BAT weighed significantly less in Fmr1 mutants compared with controls. Fmr1 KO BAT mitochondria demonstrated impaired substrate oxidation, lower mitochondrial membrane potentials and rates of respiration, and CoQ deficiency. The CoQ analog decylubiquinone normalized CoQ-dependent electron flux and unmasked excessive proton leak. Unlike mutant forebrain, where such deficiency resulted in pathological proton leak, CoQ deficiency within BAT mitochondria resulted largely in abnormal substrate oxidation. This suggests that CoQ is important in BAT for uncoupled respiration to produce heat during development. Although our data provide further evidence of a link between fragile X mental retardation protein (FMRP) and CoQ biosynthesis, the results highlight the importance of CoQ in developing tissues and suggest tissue-specific differences from CoQ deficiency. Because BAT mitochondria are primarily responsible for regulating core body temperature, the defects we describe in Fmr1 KOs could manifest as an adaptive downregulated response to hyperthermia or could result from FMRP deficiency directly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call