Abstract

PurposeEpilepsy is considered a disorder of neural networks. Patients diagnosed with refractory epilepsy frequently experience attention impairments. Seizure activity in epilepsy may disturb brain networks and damage the brain function of attention. The aims of this study were to assess functional and causal connectivities of the attention networks and default mode network using resting-state functional magnetic resonance imaging (fMRI). MethodResting-state fMRI data were gathered from 19 patients with refractory epilepsy (mixed localization and aetiologies) and 21 healthy people. The fMRI data were analyzed by group independent component analysis (ICA) fMRI toolbox to extract dorsal attention network (DAN), ventral attention network (VAN), and default mode network (DMN). The components of the selected networks were compared between patients and healthy controls to explore the change in functional connectivity (FC). Granger causality analysis was performed by taking the aforementioned significant brain areas as regions of interest (ROIs) to calculate autoregression coefficients of each pair of ROIs. Comparisons were done to find the significantly different causal connectivity when FC was changed between patients and healthy controls. ResultsIn DAN, the FC values of the bilateral frontal eye field (FEF) and left intraparietal sulcus (IPS) were decreased. In VAN, the FC values of the double-side ventral prefrontal cortex (vPFC) and the temporoparietal junction (TPJ) were reduced. As for DMN, the FC values of the bilateral medial prefrontal cortices (mPFC) were decreased whereas those for the bilateral precuneus (PCUN) were increased. Granger causal connectivity values were correlated: causal influence was decreased significantly from the left IPS (in DAN) to the double side of the vPFC but remained the same for the right FEF (in DAN) to the right TPJ. The value was decreased from the left PCUN (in DMN) to the right TPJ and FEF, and the causal flow from the right PCUN to the right TPJ and bilateral vPFC was also significantly inhibited (p < 0.05). ConclusionFrequent seizures in patients with refractory epilepsy may damage the cortex and disturb DAN, VAN, and DMN, leading to functional and causal connectivity alteration. In addition, epileptic activity may disrupt network interactions and further influence information communication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.