Abstract

A composite material of alginate and CaCl2 was tested in a laboratory reactor (1 L) for its ability to thermochemically store heat. The material was exposed to air at 25 °C and 25% RH to prevent the salt from dissolving, and the heat evolution was observed over a period of 15 cycles. To evaluate the changes in the material, samples were taken after 5, 10 and 15 cycles and the material properties and calorimetric characteristics were examined. A change of the material in favor of the heat release was determined, so that an increase of the heat storage capacity from 1.28 kJ∙cm−3 to 2.11 kJ∙cm−3 was detected, with a simultaneous steep decrease of the pore volume in the range from 0.01 to 10 μm. The temperature lift of the reactor showed a significant increase, with the first cycle showing the smallest amount.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call