Abstract
BackgroundHeat illness remains a significant cause of morbidity in susceptible populations. Recent research elucidating the cellular mechanism of heat stress leading to heat illness may provide information to develop better therapeutic interventions, risk assessment strategies, and early biomarkers of organ damage. microRNA (miRNA) are promising candidates for therapeutic targets and biomarkers for a variety of clinical conditions since there is the potential for high specificity for individual tissues and unique cellular functions. The objective of this study was to identify differentially expressed microRNAs and their putative mRNA targets in the heart, liver, kidney, and lung in rats at three time points: during heat stress (i.e., when core temperature reached 41.8 °C), or following a 24 or 48 h recovery period.ResultsRats did not show histological evidence of tissue pathology until 48 h after heat stress, with 3 out of 6 rats showing cardiac inflammation and renal proteinosis at 48 h. The three rats with cardiac and renal pathology had 86, 7, 159, and 37 differentially expressed miRNA in the heart, liver, kidney, or lung, respectively compared to non-heat stressed control animals. During heat stress one differentially expressed miRNA was found in the liver and five in the lung, with no other modulated miRNA after 24 h or 48 h in animals with no evidence of organ injury. Pathway enrichment analysis revealed enrichment in functional pathways associated with heat stress, with the greatest effects observed in animals with histological evidence of cardiac and renal damage at 48 h. Inhibiting miR-21 in cultured cardiomyocytes increased the percent apoptotic cells five hours after heat stress from 70.9 ± 0.8 to 84.8 ± 2.2%.ConclusionsGlobal microRNA and transcriptomics analysis suggested that perturbed miRNA due to heat stress are involved in biological pathways related to organ injury, energy metabolism, the unfolded protein response, and cellular signaling. These miRNA may serve as biomarkers of organ injury and potential pharmacological targets for preventing heat illness or organ injury.
Highlights
Heat illness remains a significant cause of morbidity in susceptible populations
In order to identify biomarkers and mechanisms leading to organ injury, these three animals were analyzed as a separate treatment group
In our study, we were able to identify differentially expressed miRNA involved in the major functional responses to heat stress in multiple tissues and time points
Summary
Heat illness remains a significant cause of morbidity in susceptible populations. Recent research elucidating the cellular mechanism of heat stress leading to heat illness may provide information to develop better therapeutic interventions, risk assessment strategies, and early biomarkers of organ damage. Central to the heat shock response is the activation of the heat shock factor (HSF) transcription factor, leading to the production of heat shock proteins (HSPs), which chaperone misfolded. Our previous modeling studies demonstrate that the heat shock response is initially acute and self-limiting at lower temperatures, due to the negative feedback loop between HSF and HSP [13]. As temperature and exposure times increase, transcriptional and translational efficiency decrease; the negative feedback loop loses efficacy; and HSF activation predominates, leading to a much more persistent activation of the transcription factor
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.