Abstract

Apolipoprotein B-100 acts as an inhibitor of thromboplastin activity independently of the tissue factor pathway inhibitor (TFPI) associated with plasma lipoproteins. Analysis of the primary structure of Apo B-100 showed a higher than expected occurrence of lysine groups in the receptor-binding region. In order to demonstrate the participation of lysine groups of Apo B-100 in the inhibition of thromboplastin, thromboplastin and Apo B-100 were incubated together in the presence of poly- l-lysine, poly- l-arginine, lysine and arginine monomers. The inhibition of thromboplastin by Apo B-100 was completely suppressed in the presence of poly- l-lysine. Poly- l-arginine was found to be less effective and neither lysine or arginine monomers had any significant effect on the inhibitory effect of Apo B-100. Alterations in the structure of Apo B-100 reconstituted in lipid vesicles resembling LDL, brought about by lipid peroxidation and lipid loading were examined by means of Fourier transform infra-red spectroscopy. It was found that, upon oxidation without the addition of cupric ions, the apolipoprotein attains a more exposed conformation with an increase in α-helical structure. This increase occurred at the expense of β-structure. On lipid loading, an increase in β-structure at the expense of the α-helix, was demonstrated. It is therefore proposed that the variable action of LDL towards thromboplastin derives from alterations in the secondary structure of the Apo B-100, particularly the receptor-binding region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.