Abstract
Children born very preterm (VPT) are at risk for visual impairments, the main risk factors being retinopathy of prematurity and cerebral white matter injury, however these only partially account for visual impairments in VPT children. This study aimed to compare optic radiation microstructure and volume between VPT and term-born children, and to investigate associations between 1) perinatal variables and optic radiations; 2) optic radiations and visual function in VPT children. We hypothesized that optic radiation microstructure would be altered in VPT children, predicted by neonatal cerebral white matter abnormality and retinopathy of prematurity, and associated with visual impairments.142 VPT children and 32 controls underwent diffusion-weighted magnetic resonance imaging at 7 years of age. Optic radiations were delineated using constrained spherical deconvolution tractography. Tract volume and average diffusion tensor values for the whole optic radiations and three sub-regions were compared between the VPT and control groups, and correlated with perinatal variables and 7-year visual outcome data.Total tract volumes and average diffusion values were similar between VPT and control groups. On regional analysis of the optic radiation, mean and radial diffusivity were higher within the middle sub-regions in VPT compared with control children. Neonatal white matter abnormalities and retinopathy of prematurity were associated with optic radiation diffusion values. Lower fractional anisotropy in the anterior sub-regions was associated with poor visual acuity and increased likelihood of other visual defects.This study presents evidence for microstructural alterations in the optic radiations of VPT children, which are largely predicted by white matter abnormality or severe retinopathy of prematurity, and may partially explain the higher rate of visual impairments in VPT children.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.