Abstract
The alterations that progressively appear in plasma membrane glycoconjugates of rat pancreatic cells at different stages of acute pancreatitis induced by duct obstruction have been analyzed on individual cells by flow cytometry using the fluoresceinated lectins, wheat germ agglutinin (WGA), Tetragonolobus purpureus agglutinin (TP) and Concanavalin A (Con A), which specifically bind to N-acetyl D-glucosamine, L-fucose and D-mannose, respectively. Two populations of pancreatic cells were differentiated according to the forward scatter (size), which showed different density of saccharidic terminals located at external positions in the glycoconjugates of the plasma membrane. A significant increase in WGA and TP binding was found 1.5 h after pancreatic obstruction, which could be due to the fusion of zymogen granules with the plasma membrane as suggested by the basolateral exocytosis observed by electron microscopy at this stage. The most external sugar residues of membrane glycoconjugates are removed 12 h after pancreatic duct obstruction as a consequence of an advanced state of pancreatitis. The hydrolytic process reaches greater depths in the membrane 48 h after obstruction. At this stage a significant decrease in WGA, TP and ConA binding was found in all pancreatic cells, indicating the loss of N-acetyl D-glucosamine and/or sialic acid, L-fucose and even D-mannose which is located in the core of the glycan. The results provide information about the progressive degradation induced by acute pancreatitis in pancreatic cell membrane glycoconjugates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have