Abstract

Four contrasting varieties of guar, RGC-1002 and RGC-1038, drought tolerant, while, Sarada and RGC-936, drought sensitive, were monitored in watered and drought. The water status, phenolics, plant anatomy and transcript level of genes related to anatomical traits were assessed. The study aimed to decipher the anatomical adaptations of guar plants in response to water stress. The physiological determinants, relative water content (RWC), water potential (ψ), and leaf membrane damage, declined under drought in all four varieties although, the decrement was lesser in the tolerant varieties. Furthermore, the tolerant cultivars subjected to water stress recorded higher accumulation of total phenolic content, anthocyanin and lignin, which efficiently scavenge the reactive oxygen species. The results suggest that the cultivars RGC-1002 and RGC-1038 are better able to resist drought-induced oxidative stress than Sarada and RGC-936. Moreover, leaf, petiole, stem and root anatomical traits viz. size of epidermal cell, parenchyma, width of cortex layer, and diameter of xylem vessels were narrowed in all the varieties although, the decrement was lesser in the tolerant varieties under drought. The expression analysis of genes revealed that drought-tolerant varieties showed enhanced mechanical support for water conduction by up-regulation of genes, Phenylalanine ammonia-lyase1 (PAL1), cinnamate-4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), cinnamoyl-CoA reductase (CCR), caffeoyl-CoA O-methyltransferase (CCOMT), and cinnamyl-alcohol dehydrogenase (CAD6) in water stress conditions. The alterations in physio-anatomical, biochemical and gene expression traits in tolerant guar varieties enabled them to maintain steady nutrient transport while reducing the risk of embolisms and increasing water-flow resistance for better survival in water stressed conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call