Abstract
The growing use of wireless communication devices has been significantly increasing the level of high frequency electromagnetic fields (EMFs) in the environment, which raises a concern for possible deleterious effects on living organisms. Long lasting exposure to low-intensity EMFs can cause effects on the molecular and cellular level, and a number of morphological and physiological changes. The aim of this work was to investigate the effects of 2.41 GHz EMF emitted by wireless communication systems on human erythrocytes after in vitro irradiation. The amount of the hemoglobin released from the cells was measured as an indicator for membrane destabilization. Effects of different exposure times (20 min or 4 h) and time elapsed after exposure to 2.41 GHz pulsed or continuous EMFs with different intensities, emitted from a textile (0.213–0.238 V/m) or a dipole (5, 20, 40 and 180 V/m) antenna, were investigated. The obtained results showed that the low intensity EMF had no significant effect on the hemoglobin release from irradiated cells; even a slight tendency for membrane stabilization was noticed 3–4 hours after the end of 20-min exposure to 0.213–0.238 V/m, 2.41 GHz EMF. There was no difference in the effects of continuous and pulsed EMFs. Increased hemoglobin release was observed only during the 4-hour exposure to 180 V/m, 2.41 GHz continuous EMF. Under these conditions, the temperature of the cell suspension had been rising, so we compared the results obtained under EMF with the effects of conventional heating. Moreover, after 1-hour exposure to 180 V/m the released hemoglobin level was a bit higher than the control one but the difference disappears within an hour after terminating the irradiation. In conclusion, the in vitro exposure to 2.41 GHz EMF emitted by wireless communication devices with power density below the reference level for population exposure does not change the stability of the cell membrane of human erythrocytes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have