Abstract

The intestinal epithelium barrier serves as a highly dynamic immunologic frontier in the defense against invading pathogenic bacteria and viruses. Hence, understanding of the complicated underlying relationship between enteric pathogens and the intestinal epithelium barrier is vital for developing strategies to improve the intestinal health of farm animals. To this end, Caco-2 cells were stimulated by 1 µg/ml lipopolysaccharide (LPS) for 24 h and 5 µg/ml polyinosinic-polycytidylic acid (ploy(I:C)) for 4 h to imitate bacterial and viral infection processes, respectively. The specific alterations in gene expression of Caco-2 cells after stimulation were characterized by transcriptome sequencing. Seventy differentially expressed genes (DEGs) were identified under LPS exposure, and 17 DEGs were observed under ploy(I:C) exposure. We found that most DEGs were specific, and only one common DEG SPAG7 was observed. Gene Ontology (GO) annotation analysis indicated that all DEGs identified in the different treatments were mainly derived from GO terms related to the maintenance of cellular homeostasis. Moreover, specific DEGs such as SLC39A10, MT2A, and MT1E regulated by LPS treatment, while IFIT2 and RUNX2 mediated by ploy(I:C) treatment, which are derived from immune function modulation related GO terms, were confirmed by both transcriptome sequencing and qRT-PCR. In addition, both transcriptome sequencing and qRT-PCR results verified that LPS specifically down-regulated the DEGs INHBE and ARF6, which are involved in inflammation responses related to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway including the TGF-beta signaling pathways and the Ras signaling pathway. Ploy(I:C) uniquely suppressed the DEGs GABARAP and LAMTOR3, which participated in viral replication-associated pathways including autophagy and mTOR signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.