Abstract

Pathogenic mutations of transactivation response element DNA-binding protein 43 (TDP-43) are closely linked with amyotrophic lateral sclerosis (ALS). It was recently reported that two ALS-linked familial mutants A315T and A315E of TDP-43307-319 peptides can self-assemble into oligomers including tetramers, hexamers, and octamers, among which hexamers were suggested to form the β-barrel structure. However, due to the transient nature of oligomers, their conformational properties and the atomic mechanisms underlying the β-barrel formation remain largely elusive. Herein, we investigated the hexameric conformational distributions of the wild-type (WT) TDP-43307-319 fragment and its A315T and A315E mutants by performing all-atom explicit-solvent replica exchange with solute tempering 2 simulations. Our simulations reveal that each peptide can self-assemble into diverse conformations including ordered β-barrels, bilayer β-sheets and/or monolayer β-sheets, and disordered complexes. A315T and A315E mutants display higher propensity to form β-barrel structures than the WT, which provides atomic explanation for their enhanced neurotoxicity reported previously. Detailed interaction analysis shows that A315T and A315E mutations increase inter-molecular interactions. Also, the β-barrel structures formed by the three different peptides are stabilized by distinct inter-peptide side-chain hydrogen bonding, hydrophobic, and aromatic stacking interactions. This study demonstrates the enhanced β-barrel formation of the TDP-43307-319 hexamer by the pathogenic A315T and A315E mutations and reveals the underlying molecular determinants, which may be helpful for in-depth understanding of the ALS-mutation-induced neurotoxicity of TDP-43 protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call