Abstract
The Monte Rosa nappe consists of a wide range of lithologies that record conditions associated with peak Alpine metamorphism. While peak temperature conditions inferred from previous studies largely agree, variable peak pressures have been estimated for the Alpine high-pressure metamorphic event. Small volumes of whiteschist lithologies with the assemblage chloritoid + phengite + talc + quartz record peak pressures up to 0.6 GPa higher compared to associated metapelitic and metagranitic lithologies, which yield a peak pressure of ca. 1.6 GPa. The reason for this pressure difference is disputed, and proposed explanations include tectonic mixing of rocks from different burial depths (mélange) or local deviations of the pressure from the lithostatic value caused by heterogeneous stress conditions between rocks of contrasting mechanical properties. We present results of detailed field mapping, structural analysis and a new geological map for a part of the Monte Rosa nappe exposed at the cirque du Véraz field area (head of the Ayas valley, Italy). Results of the geological mapping and structural analysis shows the structural coherency within the western portions of the Monte Rosa nappe. This structural coherency falsifies the hypothesis of a tectonic mélange as reason for peak pressure variations. Structural analysis indicates two major Alpine deformation events, in agreement with earlier studies: (1) north-directed nappe emplacement, and (2) south-directed backfolding. We also analyze a newly discovered whiteschist body, which is located at the intrusive contact between Monte Rosa metagranite and surrounding metapelites. This location is different to previous whiteschist occurrences, which were entirely embedded within metagranite. Thermodynamic calculations using metamorphic assemblage diagrams resulted in 2.1 ± 0.2 GPa and 560 ± 20 °C for peak Alpine metamorphic conditions. These results agree with metamorphic conditions inferred for previously investigated nearby whiteschist outcrops embedded in metagranite. The new results, hence, confirm the peak pressure differences between whiteschists and the metagranite and metapelite. To better constrain the prograde pressure–temperature history of the whiteschist, we compare measured Mg zoning in chloritoid with Mg zoning predicted by fractional crystallization pseudo-section modelling for several hypothetical pressure–temperature paths. In order to reach a ca. 0.6 GPa higher peak pressure compared to the metapelite and metagranite, our results suggest that the whiteschist likely deviated from the prograde burial path recorded in metapelite and metagranite lithologies. However, the exact conditions at which the whiteschist pressure deviated are still contentious due to the strong temperature dependency of Mg partitioning in whiteschist assemblages. Our pseudo-section results suggest at least that there was no dramatic isothermal pressure increase recorded in the whiteschist.
Highlights
The complex history of Alpine tectonic activity can be observed in the Monte Rosa region of the Central Alps (Fig. 1)
We present results of detailed field mapping, structural analysis and a new geological map for a part of the Monte Rosa nappe exposed at the cirque du Véraz field area
Talc, phengite and quartz ± garnet, related to Alpine high P metamorphism, are observed in whiteschists (Chopin & Monié, 1984; Luisier et al, 2019; Pawlig & Baumgartner, 2001). These unique assemblages are exposed towards the north and south-east of the Rifugio Mezzalama, and it is here, in the grand cirque du Véraz, where we find the largest concentrations of these whiteschists in the Monte Rosa nappe (Figs. 2 and 4d)
Summary
The complex history of Alpine tectonic activity can be observed in the Monte Rosa region of the Central Alps (Fig. 1). The former Piedmont oceanic domain separates the continental units of the former Europe-derived southern Briançonnais margin (Monte Rosa nappe) from the Sesia-Dent Blanche units derived from the Adriatic margin (Fig. 1) (Dal Piaz, 2001; Dal Piaz et al, 2001; De Graciansky et al, 2011; Steck et al, 2015). The area exposes portions of the Penninic nappe stack involving the crustal rocks of the former a GENEVA N. 40 km CH ITA a MR b b Zermatt IVREA GP Breithorn DM Pollux Dufourspitze Study area
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have