Abstract
Debris-covered glaciers represent a significant, increasing fraction of glaciers and can host plant life on their surface. The goal of this work was to evaluate the suitability of supraglacial debris as a habitat for plant life and to discuss its ecological and biogeographic role. The research was carried out on the Miage Glacier (Mont Blanc massif, Western Alps, Italy). Vegetation cover was sampled using a regular sampling grid, recording plant species and number of individuals in 71 plots. Detailed glaciological parameters (surface temperature, debris thickness, glacier surface velocity) were recorded or derived from published data. Relationships between vegetation and environmental variables were assessed through Generalized Linear Models, Principal Components Analysis and Canonical Correspondence Analysis. The glacier surface hosted a high biodiversity, with 40 vascular plant species, including trees and shrubs. Plant cover was arranged along an altitude/glacier velocity gradient, whilst debris thickness as low as 10 cm could sustain plant growth on moving ice. Glacier velocity was the main physical factor affecting vegetation cover, probably through its influence on debris stability. The observed species assemblage is comparable with those of subalpine glacier forelands, but with the addition of high-altitude species. Debris-covered glaciers can provide a relatively favourable habitat for plant life wherever the glacier surface is sufficiently stable, acting as a refugium of high-altitude taxa below their altitudinal limits. Glaciers may behave as a dispersal vector for alpine plant species, which could have been important both during glacial periods and during warm stages of the Holocene.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have