Abstract

In exercising dogs, increased myocardial O2 consumption (MVO2) of the left ventricle is met primarily by hyperemia, whereas increased O2 extraction makes a greater contribution to right ventricular (RV) O2 supply. We hypothesized that alpha-adrenergic vasoconstrictor tone limits right coronary (RC) blood flow during exercise, forcing increased O2 extraction. This tone might also contribute to lesser RC vascular conductance at rest. Accordingly, RV O2 balance was examined at rest and during graded treadmill exercise before and during alpha-adrenergic blockade with phentolamine (1 mg/kg, i.v., n=6). The transmural distribution of RC flow was measured with radiolabeled microspheres in 4 additional dogs. At rest, alpha-adrenergic receptor blockade did not significantly increase RC flow or conductance. During exercise, alpha-adrenergic blockade increased RC flow and conductance responses to increased RV MVO2 by 25% and 60%, respectively. The transmural distribution of RC flow was not altered by exercise or by alpha-adrenergic blockade. Before alpha-adrenergic blockade, hyperemia provided 39%-66% of the additional O2 consumed by the right ventricle during graded exercise; after alpha-adrenergic blockade, hyperemia contributed 74%-85%. After alpha-adrenergic blockade, the slope of the relationship between RC venous PO2 and RV MVO2 became less steep, reflecting less O2 extraction due to enhanced hyperemia. Additional experiments were conducted on 5 anesthetized, open-chest dogs with constant RC perfusion pressure and beta-adrenergic blockade. The RC flow response to intracoronary norepinephrine was shifted to the left compared with that measured in the left coronary circulation, consistent with observations in the conscious exercising dogs. In conclusion, alpha-adrenergic vasoconstrictor tone does not restrict resting RC blood flow, but during exercise, this tone transmurally blunts RC hyperemia and forces the right ventricle to mobilize its O2 extraction reserve. This effect is more pronounced than has been reported for the left ventricle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call