Abstract
Stimulant-induced neurochemical changes may occur at different times for different brain regions or neurotransmitter systems. This study sought to examine the behavioral and neurochemical effects of extended access to α-pyrrolidinopentiophenone (α-PVP) and 4-methylmethcathinone (4MMC). Male and female Sprague-Dawley rats were trained to self-administer α-PVP (0.1 mg/kg/infusion) or 4MMC (0.5 mg/kg/infusion) through autoshaping, and then self-administered for 21 days during 1 h (short access; ShA) or 6 h (long access; LgA) sessions. Separate rats were assigned to a naïve control group. Amygdala, hippocampus, hypothalamus, prefrontal cortex (PFC), striatum, and thalamus were extracted, and tissue was analyzed with electrochemical detection and liquid chromatography mass spectrometry. Rats acquired self-administration of α-PVP and 4MMC, and LgA rats showed more escalation of self-administration than ShA rats. Synthetic cathinone administration produced several effects on neurotransmitters. LgA self-administration of α-PVP increased 5-HIAA levels in all brain regions, compared to control. In contrast, both LgA and ShA 4MMC self-administration decreased 5-HT and 5-HIAA levels in most brain regions. LgA exposure to both synthetic cathinones increased DOPAC levels in hypothalamus and striatum, and increased HVA levels in striatum compared to control. LgA self-administration of either synthetic cathinone produced region-specific increases in NE levels, whereas ShA self-administration lowered NE levels in select locations compared to control. These alterations in neurotransmitter levels indicate that synthetic cathinone use may produce differential neurochemical changes during the transition from use to abuse, and that 21 days of self-administration only models the beginning stages of dysregulated drug intake.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have