Abstract

This review critically evaluates current knowledge of alpha-linolenic acid metabolism in adult humans based on the findings of studies using stable isotope tracers and on increased dietary alpha-linolenic acid intake. The relative roles of alpha-linolenic acid and of longer-chain polyunsaturated fatty acids in cell structure and function are discussed together with an overview of the major metabolic fates of alpha-linolenic acid. The extent of partitioning towards beta-oxidation and carbon recycling in humans is described. The use and limitations of stable isotope tracers to estimate alpha-linolenic acid desaturation and elongation are discussed. A consensus view of the extent of alpha-linolenic acid conversion to longer-chain fatty acids in humans is presented. The extent to which increasing dietary alpha-linolenic acid intake alters the concentrations of longer-chain n-3 fatty acids is described. The biological and nutritional implications of these findings are discussed. Conversion of alpha-linolenic acid to eicosapentaenoic acid is limited in men and further transformation to docosahexaenoic acid is very low. A lower proportion of alpha-linolenic acid is used as a substrate for beta-oxidation in women compared with men, while the fractional conversion to longer-chain fatty acids is greater, possibly due to the regulatory effects of oestrogen. Overall, alpha-linolenic acid appears to be a limited source of longer-chain n-3 fatty acids in man and so adequate intakes of preformed n-3 polyunsaturated fatty acids, in particular docosahexaenoic acid, may be important for maintaining optimal tissue function. Capacity to upregulate alpha-linolenic acid transformation in women may be important for meeting the demands of the fetus and neonate for docosahexaenoic acid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.