Abstract

BackgroundSpecific immunological unresponsiveness to alloantigens can be induced in vivo by treating mice with a donor alloantigen in combination with a non-depleting anti-CD4 antibody. This tolerance induction protocol enriches for alloantigen reactive regulatory T cells (Treg). We previously demonstrated that alpha-1,2-mannosidase, an enzyme involved in the synthesis and processing of N-linked glycoproteins, is highly expressed in tolerant mice, in both graft infiltrating leukocytes and peripheral blood lymphocytes.Principal FindingsIn this study we have identified that alpha-1,2-mannosidase expression increases in CD25+CD4+ Treg when they encounter alloantigen in vivo. When alpha-1,2-mannosidase enzyme activity was blocked, Treg retained their capacity to suppress T cell proliferation in vitro but were unable to bind to physiologically relevant ligands in vitro. Further in vivo analysis demonstrated that blocking alpha-1,2-mannosidase in Treg resulted in the migration of significantly lower numbers to the peripheral lymph nodes in skin grafted mice following adoptive transfer, where they were less able to inhibit the proliferation of naïve T cells responding to donor alloantigen and hence unable prevent allograft rejection in vivo.SignificanceTaken together, our results suggest that activation of alloantigen reactive Treg results in increased alpha-1,2-mannosidase expression and altered N-glycosylation of cell surface proteins. In our experimental system, altered N-glycosylation is not essential for intrinsic Treg suppressive capacity, but is essential in vivo as it facilitates Treg migration to sites where they can regulate immune priming. Migration of Treg is central to their role in regulating in vivo immune responses and may require specific changes in N-glycosylation upon antigen encounter.

Highlights

  • Glycosylation involves the addition and removal of carbohydrate moieties to newly synthesized proteins orchestrated by a sequence of enzymes in the Golgi and endoplasmic reticulum [1]

  • Asparagine (N)-linked glycans are one kind of carbohydrate moiety found on cell surface glycoproteins; divided into high mannose, hybrid- and complextype according to the sugar component and the structure of sugar chains linking to the common oligosaccharide core (Man3GlcNAc2) [2]

  • We have shown previously that alpha-1,2-mannosidase is upregulated in graft infiltrating leukocytes from long-term surviving heart grafts following pre-treatment of mice with donor alloantigen (DST) under the cover of anti-CD4 therapy (177) [11]

Read more

Summary

Introduction

Glycosylation involves the addition and removal of carbohydrate moieties to newly synthesized proteins orchestrated by a sequence of enzymes in the Golgi and endoplasmic reticulum [1]. It is a highly regulated process and specific oligosaccharides can alter both protein stability and function. Specific immunological unresponsiveness to alloantigens can be induced in vivo by treating mice with a donor alloantigen in combination with a non-depleting anti-CD4 antibody. This tolerance induction protocol enriches for alloantigen reactive regulatory T cells (Treg). We previously demonstrated that alpha-1,2-mannosidase, an enzyme involved in the synthesis and processing of N-linked glycoproteins, is highly expressed in tolerant mice, in both graft infiltrating leukocytes and peripheral blood lymphocytes

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.