Abstract
We give a short Lie-derivative theoretic proof of the following recent result of Barros et al. “A compact non-trivial almost Ricci soliton with constant scalar curvature is gradient, and isometric to a Euclidean sphere”. Next, we obtain the result: a complete almost Ricci soliton whose metric \(g\) is \(K\)-contact and flow vector field \(X\) is contact, becomes a Ricci soliton with constant scalar curvature. In particular, for \(X\) strict, \(g\) becomes compact Sasakian Einstein.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have