Abstract
In the previous paper(8), we considered a property of families of functions we termed. ‘B-equicontinuity’. It was shown that B-equicontinuity is stronger than the usual equicontinuity, and is weaker than the equicontinuity defined by Bartle (3). In this paper we consider the concept of B-equicontinuity on topological transformation groups. The net characterization of equicontinuity obtained in (8) is used in discussion. It is proved in (1) that if (X, T, π) is almost periodic, the transition group {πt|t ∈ T} is equicontinuous. One might wonder whether this conclusion can be strengthened to say that {πt|t ∈ T} is B-equicontinuous; we show here by an example that this is not true and a partial solution to this problem is given. Some relations between almost periodicity and B -equicontinuity are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.