Abstract
The Atacama Large millimeter/submillimeter Array (ALMA) obtains spatial resolutions of 15 to 5 milli-arcsecond (mas) at 275-950GHz (0.87-0.32mm) with 16km baselines. Calibration at higher-frequencies is challenging as ALMA sensitivity and quasar density decrease. The Band-to-Band (B2B) technique observes a detectable quasar at lower frequency that is closer to the target, compared to one at the target high-frequency. Calibration involves a nearly constant instrumental phase offset between the frequencies and the conversion of the temporal phases to the target frequency. The instrumental offsets are solved with a differential-gain-calibration (DGC) sequence, consisting of alternating low and high frequency scans of strong quasar. Here we compare B2B and in-band phase referencing for high-frequencies ($>$289GHz) using 2-15km baselines and calibrator separation angles between $\sim$0.68 and $\sim$11.65$^{\circ}$. The analysis shows that: (1) DGC for B2B produces a coherence loss $<$7% for DGC phase RMS residuals $<$30$^{\circ}$. (2) B2B images using close calibrators ( $<$1.67$^{\circ}$ ) are superior to in-band images using distant ones ( $>$2.42$^{\circ}$ ). (3) For more distant calibrators, B2B is preferred if it provides a calibrator $\sim$2$^{\circ}$ closer than the best in-band calibrator. (4) Decreasing image coherence and poorer image quality occur with increasing phase calibrator separation angle because of uncertainties in the antenna positions and sub-optimal phase referencing. (5) To achieve $>$70% coherence for long-baseline (16 km) band 7 (289GHz) observations, calibrators should be within $\sim$4$^{\circ}$ of the target.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have