Abstract
The high expression of folate receptor (FR) on cancer cells might be a potential target for cancer therapy. In this study, the FR-β expression and the modulation effect of all-trans retinoic acid (ATRA) in a number of cancer cell lines were analyzed. The gateway of ATRA activity on FR-β expression was further studied by a panel of retinoid activators and inhibitors. The results revealed that ATRA was capable of upregulating the expression of FR-β protein in KG-1 cells in a dosage-dependent manner, not in KG-1a, NB4, HL60, 293, L1210, JAR, and Hela cells. FR-β mRNA expression in KG-1 cells was higher when ATRA was present in culture medium at 10⁻⁶ mol/L for 5 days, and it went down to baseline when ATRA was removed from the medium, vice versa. The upregulation of FR-β expression in KG-1 cells by ATRA was not associated with cell proliferation and differentiation. In addition, activators of retinoid acid receptor (RAR)α and RARγ, CD336, and CD2781 also induced FR-β expression. The induction of FR-β expression by CD336 could be inhibited by RARγ antagonist CD2665; RARβ agonist CD-417 and CD-2314 as well as retinoid X receptor (RXR) agonist LG100364 could not induce FR-β expression. These results indicate that ATRA within a certain range of concentration could reversibly induce the expression of FR-β in a dosage- and cell type-dependent manner, and its action in KG-1 cells might be associated with the signal transduction of retinoid receptor RARα and RARγ, rather than RARβ and RXRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.