Abstract

A single-polarization solid-core anti-resonant fiber is proposed, and the influence of the fiber core material anisotropy of the solid-core anti-resonant fiber on polarization characteristics is investigated using the finite element method. Single-polarization guidance is achieved by using the anisotropy of optical fiber materials, which also ensures high birefringence. The numerical simulation results indicate that there are two single-polarization intervals (1210–1440 nm and 1490–1560 nm), with a maximum bandwidth of up to 230 nm, when the confinement loss difference between the two orthogonal polarizations exceeds two orders of magnitude. Specifically, when the work wavelength is 1550 nm, a polarization extinction ratio (PER) of 108 is obtained by optimizing the structure parameters. Additionally, the y-polarization fundamental mode (YPFM) can be well confined in the fiber center with a low confinement loss of 0.04 dB/m, while the x-polarization fundamental mode (XPFM) has a huge confinement loss larger than 4.65 dB/m due to the coupling with the tube mode. The proposed single-polarization solid-core anti-resonant fiber has a huge potential in applications such as laser systems, fiber-optic gyroscopes, and optical fiber communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.