Abstract

Abstract The capability of all-sky microwave radiance assimilation in the Gridpoint Statistical Interpolation (GSI) analysis system has been developed at the National Centers for Environmental Prediction (NCEP). This development effort required the adaptation of quality control, observation error assignment, bias correction, and background error covariance to all-sky conditions within the ensemble–variational (EnVar) framework. The assimilation of cloudy radiances from the Advanced Microwave Sounding Unit-A (AMSU-A) microwave radiometer for ocean fields of view (FOVs) is the primary emphasis of this study. In the original operational hybrid 3D EnVar Global Forecast System (GFS), the clear-sky approach for radiance data assimilation is applied. Changes to data thinning and quality control have allowed all-sky satellite radiances to be assimilated in the GSI. Along with the symmetric observation error assignment, additional situation-dependent observation error inflation is employed for all-sky conditions. Moreover, in addition to the current radiance bias correction, a new bias correction strategy has been applied to all-sky radiances. In this work, the static background error variance and the ensemble spread of cloud water are examined, and the levels of cloud variability from the ensemble forecast in single- and dual-resolution configurations are discussed. Overall, the all-sky approach provides more realistic simulated brightness temperatures and cloud water analysis increments, and improves analysis off the west coasts of the continents by reducing a known bias in stratus. An approximate 10% increase in the use of AMSU-A channels 1–5 and a 12% increase for channel 15 are also observed. The all-sky AMSU-A radiance assimilation became operational in the 4D EnVar GFS system upgrade of 12 May 2016.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call