Abstract

SummaryWearable thermoelectrochemical cells have attracted increasing interest due to their ability to turn human body heat into electricity. Here, we have fabricated a flexible, cost-effective, and 3D porous all-polymer electrode on an electrical conductive polymer substrate via a simple 3D printing method. Owing to the high degree of electrolyte penetration into the 3D porous electrode materials for redox reactions, the all-polymer based porous 3D electrodes deliver an increased power output of more than twice that of the film electrodes under the same mass loading using either n-type or p-type gel electrolytes. To realize the practical application of our thermocell, we fabricated 18 pairs of n-p devices through a series connection of single devices. The strap shaped thermocell arrangement was able to charge up a commercial supercapacitor to 0.27 V using the body heat of the person upon which it was being worn and in turn power a typical commercial lab timer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.