Abstract

Let G=(V,E) be a weighted undirected graph. A path between u,v∈V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding small-stretch paths between all pairs of vertices in the graph G.It is easy to see that finding paths of stretch less than 2 between all pairs of vertices in an undirected graph with n vertices is at least as hard as the Boolean multiplication of two n×n matrices. We describe three algorithms for finding small-stretch paths between all pairs of vertices in a weighted graph with n vertices and m edges. The first algorithm, STRETCH2, runs in Õ(n3/2m1/2) time and finds stretch 2 paths. The second algorithm, STRETCH7/3, runs in Õ(n7/3) time and finds stretch 7/3 paths. Finally, the third algorithm, STRETCH3, runs in Õ(n2) and finds stretch 3 paths.Our algorithms are simpler, more efficient and more accurate than the previously best algorithms for finding small-stretch paths. Unlike all previous algorithms, our algorithms are not based on the construction of sparse spanners or sparse neighborhood covers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.