Abstract
The doping site of metals in an alloy nanocluster plays a key role in determining the cluster properties. Herein, we found that alloying engineering was achieved by replacing Cu at specific positions in the second layer Cu20 shell of the [Au18Cu32(SR-O)36]2- or [Au18Cu32(SR-F)36]3- (SR-O = -S-PhOMe; SR-F = -SC6H33,4F2) nanocluster with Au to generate a core-shell [Au20.31Cu29.69(SR-O)36]2- protected by mercaptan ligands with electron-donating substituents, which could be stable obtained compared with the alloyed nanocluster with electron-withdrawing substituent ligands. Moreover, dealloying engineering was accomplished by an electron-withdrawing substituent ligand exchange strategy (i.e., [Au18Cu32(SR-F)36]2-). The abovementioned reaction was analyzed using single-crystal X-ray crystallography, electrospray ionization mass spectrometry, and X-ray photoelectron spectroscopy and monitored via time-dependent ultraviolet-visible absorption spectroscopy. This reversible and precise location of alloying and dealloying provides the possibility for studying the relationship between the structure and properties of nanoclusters at the atomic level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.