Abstract
Pure Zr is processed by high-pressure torsion (HPT) at pressures in the range of 1–40 GPa. A phase transformation occurs from α to ω phase during HPT at pressures above ∼4 GPa while the total fraction of ω phase increases with straining and saturates to a constant level at higher strain. This phase transformation leads to microstructural refinement, hardness and strength enhancement and ductility reduction. Lattice parameter measurements confirm that c for α phase is expanded about 0.6% by the presence of ω phase. The temperature for reverse transformation from ω to α phase increases with straining and thus, straining under high pressure increases thermal stability of ω phase. The ω phase obtained by HPT is stable for more than 400 days at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.