Abstract
The sterile alpha motif and histidine-aspartate domain-containing protein 1 (or SAMHD1), a human dNTP-triphosphohydrolase, contributes to HIV-1 restriction in select terminally differentiated cells of the immune system. The catalytically active form of the protein is an allosterically triggered tetramer, whose HIV-1 restriction properties are attributed to its dNTP-triphosphohydrolase activity. The tetramer itself is assembled by a GTP/dNTP combination. This enzyme uses the strategy of deoxynucleotide starvation, which is thought to prevent effective reverse transcription of the retroviral genome-hence, restricting HIV-1 propagation. HIV-2 and SIV have evolved defenses against SAMHD1, underscoring its role in restriction. Previous studies have provided high-resolution structures of GTP/dNTP-bound enzyme complexes but have not been able to provide information on dynamics. In this study, we have used correlation network analysis along with MD techniques to study the flow of allosteric information across the active complex. We have found evidence of a reciprocal allosteric "handshake" occurring across monomeric units. We have also uncovered a short linker region as the nexus for funnelling the regulatory signal from phosphorylation at T592 from the surface to the interior core of the protein.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have