Abstract
CD45 is a receptor-like member of the protein tyrosine phosphatase (PTP) family. We screened in silico for small molecules binding at a predicted allosteric pocket unique to the CD45 intracellular domain, and validated inhibitors by in vitro phosphatase assays. Compound 211 exhibited a CD45 IC50 value of 200 nM and had >100-fold selectivity over six related PTPs. The relevance of the allosteric pocket was verified through site-directed mutagenesis. Compound 211 has a noncompetitive mechanism of action, and it is extremely effective at preventing dephosphorylation of substrate Lck phosphotyrosine (pY)-505 versus preventing dephosphorylation of Lck pY-393. In cultured primary T cells, compound 211 prevents T-cell receptor-mediated activation of Lck, Zap-70, and mitogen-activated protein kinase, and interleukin-2 production. In a delayed-type hypersensitivity reaction in vivo, compound 211 abolished inflammation. This work demonstrates a novel approach to develop effective allosteric inhibitors that can be expanded to target the corresponding allosteric domains of other receptor PTPs.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have