Abstract

CD45 is a receptor-like member of the protein tyrosine phosphatase (PTP) family. We screened in silico for small molecules binding at a predicted allosteric pocket unique to the CD45 intracellular domain, and validated inhibitors by in vitro phosphatase assays. Compound 211 exhibited a CD45 IC50 value of 200 nM and had >100-fold selectivity over six related PTPs. The relevance of the allosteric pocket was verified through site-directed mutagenesis. Compound 211 has a noncompetitive mechanism of action, and it is extremely effective at preventing dephosphorylation of substrate Lck phosphotyrosine (pY)-505 versus preventing dephosphorylation of Lck pY-393. In cultured primary T cells, compound 211 prevents T-cell receptor-mediated activation of Lck, Zap-70, and mitogen-activated protein kinase, and interleukin-2 production. In a delayed-type hypersensitivity reaction in vivo, compound 211 abolished inflammation. This work demonstrates a novel approach to develop effective allosteric inhibitors that can be expanded to target the corresponding allosteric domains of other receptor PTPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.