Abstract

Allostery, as seen in extant biology, governs the activity regulation of enzymes through the redistribution of conformational equilibria upon binding an effector. Herein, a minimal design is demonstrated where a dipeptide can exploit dynamic imine linkage to condense with simple aldehydes to access spherical aggregates as catalytically active states, which facilitates an orthogonal reaction due to the closer proximity of catalytic residues (imidazoles). The allosteric site (amine) of the minimal catalyst can concomitantly bind to an inhibitor via a dynamic exchange, which leads to the alternation of the energy landscape of the self-assembled state, resulting in downregulation of catalytic activity. Further, temporal control over allosteric regulation is realized via a feedback-controlled autonomous reaction network that utilizes the hydrolytic activity of the (in)active state as a function of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.