Abstract

Novel all-organic polymer high-dielectric permittivity composites of polyaniline (PANI)/poly (vinylidene fluoride) (PVDF) were prepared by solution method and their dielectric and electric properties were studied over the wide ranges of temperatures and frequencies. To improve the interface bonding between two polymers, dodecylbenzenesulfonic acid (DBSA), a bulky molecule containing a polar head and a long non-polar chain was used both as a surfactant and as dopant in polyaniline (PANI) synthesis. Synthesized conducting PANI–DBSA particles were dispersed in poly(vinylidene fluoride) (PVDF) matrix to form an all-organic composite with different PANI–DBSA concentrations. Near the percolation threshold, the dielectric permittivity of the composites at 100 Hz frequency and room temperature was as high as 170, while the dielectric loss tangent value was as low as 0.9. Like typical percolation system, composites experienced high dielectric permittivity at low filler concentrations. However, their dielectric loss tangent was low enough to match with non-percolative ceramic filler-based polymer composites. Maximum electrical conductivity at 24 wt% of PANI–DBSA was mere 10−6 S/cm, a remarkably low value for percolative-type composites. Increase in the dielectric permittivity of the composites with increase in temperature from 25 to 115 °C for different PANI–DBSA concentrations was always in the same range of 50–60 %. However, the degree of increase in the electrical conductivity with the temperature was more prominent at low filler concentrations compared with high filler concentrations. Distinct electrical and their unique thermal dependence were attributed to an improved interface between the filler and the polymer matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call